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The past decade has provided biologistswith a palette of
genetically encoded, multicolored fluorescent proteins.
The living plant cell turned into a ‘coloring book’ and
today, nearly every text-book organelle has been high-
lighted in scintillating fluorescent colors. This review
provides a concise listing of the earliest representative
fluorescent-protein probes used to highlight various
targets within the plant cell, and introduces the idea
of using the numerous multicolor, subcellular probes
for the development of an early intracellular response
profile of plants.

Visualizing the plant-cell interior
The wall encasing the plant cell has been the largest
barrier to the visualization and understanding of subcel-
lular processes in living plants. Traditionally, plant scien-
tists have relied on squashing, maceration, sectioning or
enzyme-mediated degradation of the cell wall to gain
access to the inner compartments of the plant cell.
Although detailed observations of the plant cell constitute
the foundations of plant biology, the fact remains that
many of the descriptions are extrapolations of observations
made on fixed, dead plant tissue. By comparison, the
analysis of live-cell phenomena, such as cytoplasmic
streaming and organelle interactions, has been rather
limited ([1] and references cited therein) because only
those plant tissues that allow light to be transmitted
through are amenable to non-invasive visualization tech-
niques involving time-lapse video recordings. With the
advent of fluorescence microscopy and the availability of
cell permeant dyes, such as the nucleotide-binding SYTO
stains, the endomembrane-staining DIOC6 and FM4–64
dyes and the mitochondria-specific mitotracker dyes [2],
plant biologists have obtained a short time window for
live-cell imaging before toxicity-related concerns become
pertinent. Also, microinjection of specific stains and fluor-
escent-protein analogs into living plant cells has become a
powerful tool for the observation of subcellular processes
[3]. Unfortunately, microinjection procedures do require
skilled researchers, are often labor intensive and are lim-
ited in terms of useful cell types, observable cell numbers
and experimental reproducibility. Thus, only a handful of
researchers could explore their potential and, for plant
biologists, they never reached the status of a routine
technique.

Here, I provide a brief overview of how our ability to look
inside the plant cell received a tremendous boost in
the early 1990s, with the cloning and rapid availability

of a 27-kDa green fluorescent protein (GFP) from the
jellyfish Aequorea victoria [4].

Fluorescent proteins light up the plant cell interior
The genetically encoded GFP swept away many of the cell
wall-imposed limitations on live imaging of the plant cell
interior because, in stark contrast to the cumbersome
external loading of stains and dyes, GFP and its derivative
fluorescent proteins (FPs) are produced by the cells them-
selves and do not require exogenous substrates, cofactors
or chemical treatments for their activity [5,6]. Through
their fusion to specific nucleotide sequences, FPs can be
targeted to literally any compartment or component of the
cell. Once introduced into a plant cell, either for transient or
for stable transgeneexpressionafter integration in theplant
genome, FPs follow the general rules governing subcellular
protein dynamics, localization and interactions. The fusion
proteins are thus able to respond to both cell-intrinsic
and external environmental cues. Through concomitant
advancements in non-invasive, CCD-based epifluorescent
and confocal laser scanning microscopy, FPs can be readily
visualized in living plant cells [6].

Whereas, many modern laboratories using FPs in their
research trace their initial acquisition of GFP clones to
Douglas Prasher and Martin Chalfie [4], Roger Tsien [7] or
to the commercial source Clontech (http://www.clontech.
com), a large portion of the credit for modifying GFP for
optimal expression in plants and popularizing its use
among fellow plant scientists through its unconditional
sharing goes to Jim Haseloff and his research team [8]. By
late 1997, many plant research laboratories had intro-
duced the cDNAs for mGFP5 and mGFP5-ER (targeted
to the endoplasmic reticulum) into their plant dissection
strategies involving transcriptional and translational
fusion proteins.

The rapid acceptance of GFP as a live reporter protein
provided a strong motivation for the creation of newer
versions of FPs with altered spectral characteristics [9].
Today, multicolored FPs spanning the visible spectrum
have been obtained from a variety of organisms [9,10].
In plants, two complementary FP-based investigative
strategies have been adopted:
(i) those creating chimeric translational and transcrip-

tional constructs using FPs to gain spatiotemporal
information about gene activity in the plant develop-
mental context;

(ii) those that specifically target FPs to organelles and
vesicles or to the cell boundary components to
understand subcellular dynamics and interactions
(Table 1).
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Whereas this review focuses largely on subcellular mar-
kers for use in plants, the visualization of FPs within a
tissue/organ has been pivotal in educating us about various
important aspects of plant development including those
related to signaling [11,12] and patterning [13,14]. Many of
the stable transgenic lines of Arabidopsis thaliana exhibit-
ing tissue- or cell-type-specific expression patterns, such as
the GAL4–GFP enhancer trap lines from Jim Haseloff and
from Scott Poethig, have been created using the mGFP5-
ER construct and are now available through public domain
seed stock centers, such as NASC (http://arabidopsis.info/).

In addition to their uses as marker lines in research and in
helping to elucidate gene function within the developmen-
tal context, Arabidopsis lines exhibiting tissue-specific
GFP expression are turning out to be excellent teaching
material.

Understanding subcellular dynamics and interactions
through targeted FPs
The ss-GFP–HDEL fusion construct, one of the first
subcellular targeted probes to be created, fluorescently

Table 1. A non-comprehensive list of different targeted Fluorescent Protein probes available for plants
Target compartment Fusion Proteina – Brief description Refs

Apoplastic spaceb secGFP – Secretory GFP created by fusing a chitinase signal peptide to GFP; transits through the ER lumen [29]
Cell wallb CFP::PRP2 – A cyan fluorescent protein fused to A. thaliana full-length proline-rich protein 2A [41]
Chloroplast RBCS1A::GFP – A. thaliana ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit 1A N-terminal

transit peptide (amino acid residues 1–55) fused to GFP
[66]

RECA::GFP – A. thaliana recombinase-A N-terminal transit peptide (amino acid residues 1–15) fused to GFP [16]
Plastid nucleoids PEND::GFP – N-terminal region from plastid envelope DNA-binding protein fused to GFP [67]
Amyloplast TP::YFP – Transit peptide from wheat granule bound starch synthase fused to YFP and placed under a

rice actin promoter
[68]

Cytosol GFP/smGFP – Soluble, modified GFP. Non-targeted GFP accumulates in the cytosol [8,69]
Endoplasmic reticulum
(ER)

ss-GFP::KDEL – GFP fused to a potato patatin storage protein N-terminal signal sequence (amino acid
residues 1–23) and Catharanthus roseus heat-shock protein 90 C-terminal KDEL ER retrieval sequence
(amino acid residues 814–817)

[70]

ER-membrane spGFP5::CX – GFP5 fused at the N-terminal end to a sporamin signal peptide calnexin [71]
ER-body ss-GFP::HDEL – GFP fused to an A. thaliana basic chitinase N-terminal signal sequence (amino acid

residues 1–21) and a C-terminal HDEL ER retrieval sequence
[8,36]

Early-type endosome ARA7::GFP – A. thaliana full-length Rab isoform 7 fused to GFP
Late-typeb endosome ARA6::GFP – Arabidopsis full-length Rab isoform 6 fused to GFP [31]
Golgi body ERD2::GFP – Arabidopsis full-length ER retention-defective-2 protein (HDEL-ER retrieval signal receptor

protein) fused to GFP
[23]

cis Golgi GmMAN1::GFP – a(1,2)-mannosidase I, a resident Golgi protein from Glycine max fused to GFP [72]
medial Golgi XylT36::GFP – First 36 amino acids of b(1,2)-xylosyltransferase from A. thaliana fused to GFP [73]
trans Golgi Sttmd::GFP – Rat a(2,6)-sialyltransferase N-terminus (amino acid residues 1–52 including the single

transmembrane domain) fused to GFP
[23]

Microfilaments (F-actin) GFP::mTalin – GFP fused to the F-actin-binding domain (amino acid residues 2345–2541) from
mouse Talin gene

[17]

GFP::ABD2 – GFP fused to the actin-binding domain-2 of A. thaliana FIMBRIN1 gene [39]
Microtubules GFP::MAP4 – GFP fused to the microtubule-binding domain (amino acid residues 935–1084) from the

mouse microtubule-associated protein 4 fused to GFP
[18]

Microtubule+ end GFP::EB1 – GFP fused to the full length cDNA of microtubule plus end-binding protein (EB1a/EB1b)
from A. thaliana

[19,27]

Mitochondrion CoxIV::GFP – Cytochrome oxidase subunit IV N-terminal presequence (amino acid residues 1–29) from
Saccharomyces cerevisiae fused to GFP

[74]

GGPS6::GFP – A. thaliana geranylgeranyl pyrophosphate synthase isoform 6 N-terminal (amino acids
residues 1–42) fused to GFP

[75]

Nucleus SM40::GFP – Mammalian simian virus 40 large T-antigen nuclear-localization signal (amino acid residues
126–132) fused to GFP

[66]

C2NLS::GFP – Tobacco etch virus polypeptide c2 nuclear-localization signal (amino acid residues
1810–1854) fused to GFP

[65]

Nuclear envelope LBR::GFP – The first 238 amino acids of the human lamin B-Receptor fused to GFP [71]
Nuclear pore MOS3::GFP – Full-length cDNA for A. thaliana MOS3 (MOFIDIER OF SNC1) fused to GFP [76]
Nucleolus AtFbr1::smGFP – Full-length cDNA for A. thaliana FIBRILLARIN1 gene fused to GFP [77]
Chromatin H2B::YFP – A. thaliana cDNa for histone 2B fused to YFP [78]
Oil body Oleosin::GFP – A. thaliana full-length oleosin isoform S3 fused to GFP [79]
Peroxisome GFP::PTS1 – GFP fused to pumpkin hydroxypyruvate reductase isoform 1 C-terminus (amino acid

residues 377–386 of peroxisomal targeting signal type 1)
[80]

Plasma membrane GFP::ROP6 – GFP fused to A. thaliana full-length Rho of plants isoform 6 [81]
Plasmodesmata MP::GFP – full-length tobacco mosaic tobamovirus movement protein fused to GFP [15]
Precursor-accumulating
vesicle

SP::GFP::PV72C – Pumpkin 2S albumin signal peptide/sequence (residues 1–22) fused to GFP with the
C-terminus (amino acid residues 557–624) of pumpkin precursor-accumulating vesicle 72-kDa protein

[82]

Proteasome PAF::GFP – Tobacco full-length proteasome a 6(F) subunit of 20S proteasome fused to GFP [64]
Ribosomes THI1::GFP – The N-terminus of A. thaliana THI1 cDNA (nucleotides1–315) fused to GFP [63]
Lytic-type vacuole Aleurain::GFP – N-terminus of barley aleurain thiol protease precursor (amino acid residues 1–143

including an ER-targeting signal sequence and vacuolar targeting propeptide) fused to GFP
[83]

Storage-type vacuole ss-GFP::VSS – N-terminal signal sequence (amino acid residues 1–23) of tobacco chitinase A fused to
GFP and C-terminal vacuolar sorting signal (amino acid residues 318–324) fusion construct

[84]

aThe late-type endosome is also referred to as a prevacuolar compartment or multivesicular body [31].
bThe apoplastic space and the wall are not considered subcellular components but are intimately related to the plant cell.
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highlights the endoplasmic reticulum (ER) [8] and has
been used by many laboratories to obtain their first
glimpse of green fluorescence in plant cells. Subsequently,
this probe has been used as a useful control when targeting
FPs to other organelles (Figure 1). Although every discov-
ery relating to the inner workings of the plant cell should
be considered important and find a mention in this over-
view, a listing of the myriad of discoveries and the numer-
ous probes created during the past decade has to be
curtailed owing to space limitations. However, in recog-
nition of the rapid growth of the field and the necessity of
keeping it frequently updated, a new online resource
devoted to ‘the Illuminated Plant Cell’ (http://www.
illuminatedcell.com/) is being created. This website aims
to provide a comprehensive listing of probes and related
information to the community. Nevertheless, certain
findings, such as the elucidation of mechanisms of plas-
modesmatal functioning and viral movement [15], the
rediscovery of plastid stromules [16], the visualization of

the intricate cytoskeletal organization [17,18] and unra-
veling of its functioning [19–22], the recognition of novel
actin-based mechanisms for organelle motility [23–25] and
subcellular interactions [26–28], the recognition of exocy-
tosis- [29] and endocytosis-mediated [30,31] mechanisms
in plant development, the visualization of cellulase
synthase (CESA6) organization and in situ activity [32],
and the use of targeted GFP in microscope-based mutant
screens [33–35], have resulted directly from the use of
targeted fluorescent proteins.

One of the benefits of using FPS for live imaging is the
observation of transient subcellular phenomena, such as
the conditional highlighting of spindle-shaped ER bodies
[8] in response to defense-inducing conditions (e.g. herbiv-
ory [36]) and the quick evaluation of organelle behavior in
response to stress and apoptotic signals. Conditional dual
targeting of certain probes, such as the ERD2–GFP, which
can accumulate specifically in Golgi bodies (Figure 1) or be
localized in both the ER and Golgi stacks [23], has also

Figure 1. Diagrammatic representation of a generalized plant cell providing the reference locations of subcellular components and compartments to which the fluorescent
proteins are targeted, along with the pertinent citations. The diagram is not drawn to scale and does not accurately reflect the relative numbers of subcellular components.
Ribosomes [63] and proteasomes [64] have nuclear as well as free cytoplasmic locations. The figure is based on Ref. [62].
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been possible using targeted FPs. Furthermore, although
(based on similar localization patterns) a large number of
proteins are known to highlight peroxisomes and mito-
chondria [37,38], the need for multiple probes has been felt
for the labeling of F-actin [17,39] and microtubules [18,40]
following concerns that a single probe might not label the
entire gamut of arrays displayed by these ubiquitous cyto-
skeletal elements. Thus, the number of targeted probes
created sometimes out of dire necessity but often through
routine experiments designed to localize a gene product,
continues to grow steadily. An approach that has been
particularly useful in generating probes has been the
creation of random cDNA::FP fusions to identify new sub-
cellular structures in plant cells [37,41–43]. The increased
diversity in probes targeted towards the same subcellular
structure provide the researcher with a range of protein
tools to suit specific experimental requirements, act as the
much-needed independent probes for controls and confir-
mation of observations, and are leading to more detailed
dissection of suborganellar properties [21,22,25,44].
Because the creation, merits, demerits and numerous uses
of probes targeted to specific organelles have been
reviewed in detail [44–47], Table 1 and Figure 1 do not
provide a comprehensive listing of every targeted fusion
protein created to-date. Rather, they serve to emphasize
the fact that a vast majority of subcellular compartments
and components of the plant cell have become fluorescently
highlighted.

The following sections briefly explore the long-term
implication of the availability of multiple subcellular
probes for achieving a better understanding of the plant
cell.

A target within reach: the multicolored plant cell
Most early organelle-targeted probes used different
versions of GFP. These probes allowed the clear visualiza-
tion of the targeted organelle (Table 1) and the dissection of
interactions occurring between similar organelles, such as
chloroplast–chloroplast interactions through stromules
[16] or the ‘kiss and run’ transient interaction between
mitochondria [45]. However, they did not allow the visual-
ization of interactions occurring between two or more
different organelles. Single FP-based observations thus
reveal only a small part of the dynamic subcellular world.
The vital subcellular cooperation and coordination of inter-
actions can best be pursued when more than one FP tags
are used for targeting different structures [24,27,48].
Therefore, there is a growing trend to replace GFP with
other compatible, colored FPs to achieve the simultaneous,
multicolor visualization of multiple organelles and their
interactions. For example, the GFP–MAP4 (MBD) probe,
which has served as a very useful label for cortical
microtubule arrays [18], is now also available in cyan
(CFP–MAP4) [48], yellow (YFP–MAP4) [27] and red
(DsRed–MAP4) [49] versions. The availability of these
different FP-tagged versions of MAP4 has allowed the fine
analysis of microtubule dynamics and led to numerous new
insights [19,20,26,27,48,49]. The multicolor visualization
approach is also resulting in a slow reversal of the tendency
to exclude chlorophyll autofluorescence in green tissues by
creating specific narrow band filters for GFP. In fact, in

many live visualization strategies, not only does the
orange-red chlorophyll provide a bright counter-fluor-
escence to GFP but it also allows the simultaneous visual-
ization of chloroplasts with other FP-labeled organelles
(Figure 2a,h). Most importantly, the photobleaching of
chloroplasts can be used as an internal control for photo-
damage-induced artifacts (Box 1). Figure 2 provides a few
examples of multicolor probes that are being used for the
simultaneous visualization of different organelles in plant
cells. In the simplest strategy for creating amulticolor line,
two stable transgenic lines carrying dissimilar FP-probes
targeted to separate organelles can be crossed. By in-
cluding chloroplasts as autofluorescent structures, this
strategy easily allows the visualization of three different
organelles within the same cell (Figure 2a,h,i). Although
subject to limitations imposed by gene-silencing mechan-
isms, the two-color-FP-containing plant can be further
transformed and selected for inclusion of an additional
FP-marker (Figure 2b–e). Although the expression of four
FPs [e.g. ECFP (emission max. ca. 475 nm), EGFP (emis-
sion max. 509 nm), EYFP (emission max. ca. 527 nm) and
RFP (monomeric DsRed/mRFP, emission max. ca. 607 nm)
[9,10,50]] can be achieved, the actual visualization and
convincing separation of more than four colors within a cell
is still a technically challenging task. Theoretically, very
fine spectral separation can be achieved by confining data
collection to peak emission wavelengths for different

Box 1. Knowing the ‘darker side’ of FP-based technology

The FP-based method for studying plants does require a cautionary
note. Because each FP has a specific size and characteristic folding
properties, the addition of an FP-tag to determine the subcellular
localization and behavioral properties of another protein of interest
must be mindful of issues related to alterations of protein mobility,
turnover and stability, in addition to the possible alterations in
subcellular localization patterns. The size of the protein being fused
to the FP, the information related to the folding of the fusion protein,
the shielding of a signal sequence or the inadvertent snipping off of
a portion of the C-terminal sequence, the introduction of a ‘hinge’
between the protein of interest and the FP, the unintentional
introduction of a mutation in a PCR-based cloning approach, are
all considerations that should be matched by adequate controls.
Artifacts might also result from using multimeric versus monomeric
versions of a given FP or by relying overly on transient over-
expression data versus stable expression (or vice versa) for a
particular fusion-protein probe. Although transient expression
experiments, including those resulting in a sudden subcellular
flooding of a FP-probe through the use of inducible promoters, can
result in major misinterpretations of protein behavior and localiza-
tion, even stable transgenic lines should be carefully screened for
the range of protein expression, plasmid insertion related effects
and the possible developmental consequences before putting
forward an opinion on gene function. The most common mis-
interpretations result from faulty imaging methods and conditions,
especially where broadband filters that allow a bleed-through of
native autofluorescence are used. This specific imaging artifact is a
major concern in conclusions based on FP-colocalization or FRET
interactions. Great caution must be exercised when observing
motile organelles over time, because even transient changes in
high-intensity laser-induced photobleaching as well as membrane
damage can greatly skew motility data. Again, data overextraction
through the use of non-transparent algorithms and data extrapola-
tion software are concerns associated with FP-technology. More
detailed discussions on the advantages and disadvantages of FP-
based probes and the limitations of light microscopy are available
[5–7,9,10,47,50,60].
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probes. Whereas this is possible for brightly fluorescent
cells where the different FPs display roughly similar levels
of fluorescence intensities, the large overlaps in excitation
and emission spectra for most commonly used FPs, com-
bined with the subcellular motility of organelles, fre-
quently create confusing color-overlaps. Approaches
aimed at increasing wavelength resolution for multicolor
imaging range from spectrophotometric separation or/and

algorithm-based FP-specific spectral profiling for protein
discrimination. Alternatively, FPs possessing more strin-
gent spectral characteristics are available for use [9,10].
Recently, the creation of several inducible promoters has
introduced another exciting range of possibilities whereby
the FP remains unexpressed until the chimeric gene is
triggered by the exogenous application of an inducing
chemical or change of temperature regime [21,51,52]. In

Figure 2. Transgenic lines in Arabidopsis thaliana carrying combinations of probes targeted to different organelles and compartments are being created for simultaneous
multicolor visualization of the living plant cell. (a) Chloroplasts (ch; red autofluorescence), mitochondria (mito; green fluorescent) and peroxisomes (per; yellow
fluorescence [24]) visualized simultaneously. (b) Peroxisomes (per; false allocated red color for YFP–SKL target [24]) and endoplasmic reticulum (GFP targeted to the ER [8])
visualized in a single confocal section. (c) Golgi bodies (Gol; false allocated red color for ERD2–GFP target [23]) and actin microfilaments (Af; false allocated green color for
YFP–mTalin target [17]) visualized in a pavement cell. (d) Simultaneous visualization of the two major cytoskeletal elements in plants through GFP labeled F-actin (Af;
targeted through GFP–mTalin [17]) and DsRed2–MAP4(MBD)-labeled microtubules (Mt; red color). (e) Visualization of YFP-labeled plasma membrane [37] and GFP-labeled
microtubules [18]. (f) Peroxisomes (per; YFP–SKL target [24]) and cyan colored F-actin (Af; CFP–mTalin) covisualized using dual band CFP–YFP filter (Chroma technology-
filter set 59017). (g) Nucleus (Nu) highlighted using GFP–NLS [65] within a microtubule cage (Mt; red color; MBD). (h) Multicolor visualization can offer clues about the
relative amounts of proteins, viz, GFP (green) and Chlorophyll (red autofluorescence) as well as their coincident localization (yellow) in different chloroplasts (ch) within the
same area of the cell. Also shown are stromules (st) connecting chloroplasts. (i) The simultaneous visualization strategy can be greatly augmented by using morphological
criterion in addition to multicolor FP targeting as shown in this single confocal scan. The round GFP–NLS targeted [65] nucleus (Nu), is clearly distinguished from the GFP–
mTalin [17] targeted F-actin (Af) and the net-like endoplasmic reticulum (ER; targeted using a HKDEL [8] fusion to DsRed2).
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addition, several photo-inducible FPs have become avail-
able. These include PA-GFP (photoactivable-GFP), which
becomes activated by 405 nm-light to produce a many-fold
increase in fluorescence [53]. PA-GFP has been targeted to
the ER to understand protein dynamics within this com-
partment [28]. Similarly EosFP [54] and Kaede [55], two
FPs that rapidly change color from green to red upon
activation by near-UV light (ca. 390 nm) have been used
for the visualization of endocytosis events at the plasma
membrane [30] and to improve our understanding of mito-
chondrial fusion and division [56], respectively. FPs that
accumulate in the cytosol and respond to specific activator
molecules, such as reactive oxygen species [57] or to
changes in the status of various ions, including H+,
Ca2+, Cl! andNO3

! (reviewed in Ref. [58), and destabilized
versions of FP [59] have been developed and are valuable
additions to the fluorescent protein tool kit.

Although not discussed here, advanced imaging
techniques, such as bimolecular fluorescence complemen-
tation (BiFC [60]), biluminescence resonance energy trans-
fer (BRET), Forster or fluorescence resonance energy
transfer (FRET), fluorescence lifetime imaging (FLIM)
and fluorescence recovery after photobleaching (FRAP
[61]) (reviewed in Refs [5–7,9,10,50]), are all off-shoots of
FP-based technology whose application in plant research is
gathering momentum.

Targeted FPs and EIRPing of plants: an emerging
concept
As discussed earlier, FPs have provided us with the ability
to look inside living plant cells and have revealed that,
within their rigid walls, plant cells actually display rapid
subcellular dynamics. To ensure survival, a rooted plant
needs to respond very quickly to diverse environmental
cues. Interestingly, our understanding of a plant’s
response to a given stimulus comes from observations that
are usually made long after the causal event has occurred.
For example, although we know that, like all other living
organisms, plants suffer from stress, we do not know the
earliest subcellular indications of stress shown by a plant
cell. Similarly, we recognize that plants are susceptible to
pests and diseases but have only a hazy idea about the
earliest responses of a plant cell to the invasion of its
epidermal surface.

The fluorescently illuminated plant cell thus has a lot of
new information to offer through its rapid response to
environmental cues. In the long term, this information
can be judiciously combined with molecular-genetic strat-
egies to devise better strategies for plant improvement and
management. These thoughts and the availability of
numerous targeted fluorescent protein probes and trans-
genic lines have led to the idea of generating an early
intracellular response profile for plants (EIRPP; http://
www.uoguelph.ca/"jmathur/research/EIRP.html). Proof
of concept studies for EIRPP using the model plant Arabi-
dopsis thaliana are already underway.
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